## RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

**B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2019** 

SECOND YEAR (BATCH 2018-20)

**CHEMISTRY** (Honours)

: 16/05/2019 Time : 11.00 am – 1.00 pm

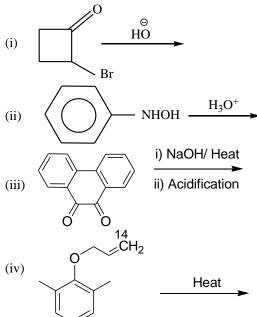
Date

Paper : IV [Gr-A]

Full Marks: 40

[Use one Answer Book for Unit I and another Answer Book for Unit II & III]

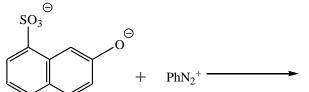
#### (Attempt one question from each Unit)


### Unit I

[15 marks]

Predict the product of the following reaction. Give mechanism in each case. 1. a)

[2×4]


[4]



- Alkaline hydrolysis of C<sub>6</sub>H<sub>5</sub>CN affords the salt of an acid but in the presence of H<sub>2</sub>O<sub>2</sub> an amide b) is formed. Explain. [2]
- Explain the following statements with proper justification. c) i) 3,3-Dimethyl-2-bromobutane, Me<sub>3</sub>CCH(Br)Me, undergoes  $S_N^{-1}$  hydrolysis with rearrangement whereas its phenyl analogue, Me<sub>3</sub>CCH(Br)Ph, undergoes hydrolysis without rearrangement. ii) Hofmann, Lossen, Curtius and Schmidt rearrangement are mechanistically similar.
- d) Comment on the choice of phthalimide in the preparation of pure primary amine by Gabriel's method. [1]
- Two isomeric  $\alpha$ -chloroketones having the molecular formula C<sub>9</sub>H<sub>9</sub>ClO when treated separately 2. a) with aqueous NaOH, give the sodium salt of  $\beta$ -phenylpropionic acid. Explain with mechanism. [3]
  - Write down the product(s) of the following reactions with proper mechanism. [2×2] b)



Predict the product of the following reaction and write the mechanism. Comment on the rate c) determining step and pH of the reaction medium. [2]



Carry out the following transformation with mechanistic detail. d)



Explain what happens when e) i) Diazoaminobenzene is treated with dilute HCl. ii) Cyclopentanone is treated with concentrated H<sub>2</sub>SO<sub>4</sub>.

#### **Unit II** (Take T = 298 K and P = 1 atm, if not mentioned)

- a) The specific conductance of pure water at 30°C is 38.4  $\times$  10<sup>-9</sup> S cm<sup>-1</sup>. The  $\lambda_m^0(H^+)$  and 3.  $\lambda_m^0$  (OH<sup>-</sup>) are 315 S cm<sup>2</sup> mol<sup>-1</sup> and 173.8 S cm<sup>2</sup> mol<sup>-1</sup>, respectively. Calculate the ionic product of water. Is this water alkaline or acidic with respect to water at  $25^{\circ}C$  (pH = 7). (1 lit of water weighs 998.5 kg at 30°C)
  - b) Show that the metal-metal ion half-cell potential E Ag+/Ag is related to corresponding metalinsoluble salt-anion half-cell potential, E X/AgX/Ag through the relation — [3]

$$\mathbf{E}^{\mathbf{o}} \mathbf{x}^{\prime} \mathbf{A}_{\mathbf{g}} \mathbf{x} \mathbf{A}_{\mathbf{g}} = \mathbf{E}^{\mathbf{o}} \mathbf{A}_{\mathbf{g}+\mathbf{A}\mathbf{g}} - \frac{2.303 \mathrm{RT}}{\mathrm{F}} \mathrm{pk}_{\mathbf{SP}}(\mathrm{AgX})$$

[where  $X^-$  is the halide ion (Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>)] If  $K_{sp}$  (AgCl) >  $K_{sp}$  (AgBr)>  $K_{sp}$  (AgI), then arrange the potential  $E^{\circ} \overline{X'_{AgX/Ag}}$  (where  $X^{-} = Cl^{-}$ ,  $Br^{-}$ , **I**<sup>−</sup>)

c) Explain the term 'electrophoretic effect' in context to electrical conductance of an ion in aqueous solution.

d) 
$$Pt | H_2(g, 1 atm) \begin{vmatrix} HA_2(pk_a = 6) \\ C_1 at 298K \end{vmatrix} \begin{vmatrix} HA_1(pk_a = 4) \\ C_1 at 298K \end{vmatrix} H_2(g, 1 atm) | Pt$$

Calculate the e.m.f of the above cell at 25°C. What are the assumption(s) which must be made in order to solve the problem? [4+2]

- a) How do you explain the experimental observation that H<sup>+</sup> conductance increases with increase 4. in temperature?
  - b) Specific conductance of a sample of distilled water is  $5.5 \times 10^{-6}$  Sm<sup>-1</sup>. Also given :

 $\lambda^{o}(H^{+}) = 3.498 \times 10^{-2} \text{ S m}^{2} \text{ mol}^{-1}$ 

$$\lambda^{\circ}(OH^{-}) = 1.980 \times 10^{-2} \text{ S m}^{2} \text{ mol}^{-1}$$

density of water =  $1.0 \text{ gcm}^{-3}$ 

[2]

[2]

[13 marks]

[2]

[2×2]

[2]

|    | Unit III [12 m                                                                                                                     | arks] |
|----|------------------------------------------------------------------------------------------------------------------------------------|-------|
| e) | Briefly explain the nature of potential variation during a potentiometric titration of Fe(II) solution with KMnO <sub>4</sub> .    | [2]   |
| u) | Will the cell reaction be spontaneous as written? Explain.                                                                         | [2]   |
| d) | conductance is $\sqrt{c}$ for weak electrolytes?<br>Pt Cl <sub>2</sub> (P = 0.9 atm)   NaCl (aq)   Cl <sub>2</sub> (P = 0.1atm) Pt | [3]   |
| c) | Why the equivalent conductance at infinite dilution cannot be obtained by plotting equivalent                                      |       |
|    | Find (i) degree of dissociation ( $\alpha$ ) of water and ii) the ionic product of water (K <sub>w</sub> ).                        | [4]   |

- ---

[2]

[3]

5. a) Justify that the harmonic oscillator wave functions, given below, are orthogonal to each other -

$$\psi_0(\mathbf{x}) = \left(\frac{\alpha}{\pi}\right)^{\frac{1}{4}} e^{-\alpha \mathbf{x}^2/2}$$
$$\psi_1(\mathbf{x}) = \left(\frac{4\alpha^3}{\pi}\right)^{\frac{1}{4}} \mathbf{x} \cdot e^{-\alpha \mathbf{x}^2/2}$$

where the terms have their usual meaning.

- b) Zero point energy of a simple harmonic oscillator does not violate Heisenberg's uncertainly principle. Justify. [2]
- c) Use the function,  $\psi = \frac{1}{\sqrt{2\pi}} e^{iM\phi}$  to determine the energy eigenvalue and the expectation value for a particle in a ring of radius r. [3]
- d) Find the average value of  $\frac{1}{r}$  for the 1s electron of an H atom and hence obtain the average potential energy. Given,  $\psi_{1s} = \sqrt{\frac{1}{\pi}} e^{-r}$ . [3]
- e) The 2s wave function for the hydrogen atom is  $\psi_{2s} = N(2-r/a_0)e^{-r/2a_0}$ , where N is a constant, r is the distance from the nucleus and  $a_0$  is the Bohr radius. Find the distance from the nucleus, in terms of  $a_0$ , at which the radial probability density shows a maxima. [2]
- 6. a) Draw a qualitative plot of probability distribution for ground and 1<sup>st</sup> excited state wave function for harmonic oscillator in same graph. Comment on satisfying the Bohr's correspondence principle for quantum harmonic oscillator.

# b) Justify that the radial equation of H atom has an eigenvalue $-\frac{1}{2}$ a.u. Given that, $R_{10}(r) = 2e^{-r}$ and

radial equation is 
$$\left[-\frac{1}{2}\left\{\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d}{dr}\right)\right\}-\frac{l(l+1)}{r^2}-\frac{1}{r}\right]R_{nl}\left(r\right)=E_nR_{nl}\left(r\right)$$
[3]

c) The 1s wave function for the hydrogen is  $\psi_{1s} = (\pi a_0^3)^{-\frac{1}{2}} e^{-r/a_0}$  where  $a_0$  is the Bohr radius. Calculate the probability of finding the electron within a distance  $a_0$  from the nucleus.

Given, 
$$\int_{0}^{\alpha} x^{n} e^{-bx} dx = \frac{n!}{b^{n+1}} : n > 1$$
 [3]

d) Define radial distribution function (rdf) and give the plot of rdf corresponding to the following wave function against (r/a<sub>0</sub>),  $\psi$ -

$$\psi = A(2a_0 - r)e^{-r/2a_0}$$
[3]

(3)